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where the plus sign in the subscripts applies for I = 1 and the minus sign for j = 2; 

3) the same boundary conditions as the functions tci fz, 8): 
4) the same (but homogeneous) linear matching conditions as the functions uj (5, tf 

at the sites of the concentrated masses, rigid or elasticomassive supports with linear 
characteristics, etc. 

It is easy to show that relations (2.12) are equations in variations for nonlinear match- 
ing conditions (2.2) for x = I,, Unlike the remaining boundary conditions for the per- 

t~bat~o~s Ej , (2.12) contains terms with x / w-periodic coefficients, If the modulation 
of these coefficients is not large, then characreristio exponents (1.25) can be determined 

by the method of Sect.1 with allowance for the appended Note. 

Translated by A.Y. 
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We consider the problems of optimisation of control processes with first and higher order 

constraints imposed on the phase coordinates o-3). We establish conditions which make 
easier the determination of the point at which the phase trajectory leaves the boundary 
of the region of admissible variation of coordinates. 

1, Strtemant af ths problem, The problem studied in @, 43 was the fol- 
lowing. Out of the continuous functions xg (t), (s = l,.. ,, n) possessing piece-wise con- 
tinuous derivatives q (1) and out of the piece-wise continuous controls UA (t), (k = I,.. 

. . . . m) satisfying the differential equations 

g, = xg* - Is (x, u, t) I‘ 0 (s = 1,.*. n) W) 

on the interval [to, 2’1 , the relations 

the inequa~~ 
$ k = $lk (X, u, t) = 0 (k = I,..., r < m) 

@ (2) G 0 

at the ends of the segment [b,,,, Tl and the conditions 

cPr = rprls itof, ior z(T), Tl = 0 (t = L.., P f 2n + $1 
to find those, which minimize the functional 

1 = g [z (to), 20, I:(T), Tl+ [ fo (2, u, t) CL! 
Ill 

Here 2 and u denote the respective sets of phase coordinates x1,... Z~ and controls 
Ul,.., +$. 

In such problems the optimal trajectory may in&de segments belonging to the bound- 
ary of the region defined by the inequality (1.3). In the following, we shall concentrate 
our attention on such segments. 

If a segment of the trajectory lying on the interval it%* t21 belongs to the boundary of 



the region fl.3ft we can describe this fact in two different ways. Firstly, we can assume 
that Q i--: 0 for rf E I t,, 2,) , stressing the fact that when t = t, , @ =L 0 . Secondly, 
we can say that for t = tl, @ = 0 and the following equation 

&L~ d6 
,=; dz js = ‘) (1.3) 

8 

is satisfied for t E Itz, ta] . The latter may take place only when 19~ depends on the con- 

trol parameters explicitly, so that 6 I = 6, (z, u, t). The constraints possessing this pro- 

perty are usually called the first order coordinate constraints [3]. 

does not depend expiicitly on the controls and the function 

does, the constraints are called the qth order coordinate constraints [3]. 

2, Pfrat order conrtrrfntr, If the first method 5s used to describe the bound- 
ary of the region (1.3) and we assume that 6 = 0 when t E ItI, tz] and t = tI, the func- 
tional I introduced in @f has the form 

An additional control um+t is introduced here together with the auxiliary relation 

6 + u7)1+12 = 0, the latter allowing for the boundedness oftheregion of admissible vari- 
ation of the phase coordinates. 

The second method of describing the boundary leads to the following functional: 

fZ r$ _t j [j$ ?+%s’ - H(s) - 31&L] & f VI6 [z (Qf (3.3) 
$0 s-71 

The function HrLt appearing in it can be obtained from the first relation of (2,2?) by 
making the relevant changes in the superscript, 

Constructing the necessary conditions of statioharity and performing the routine varia- 
tional operations, we obtain the following equations for the first case: 

and 
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for the second case. In the latter we use the relation 

(25) 

and write only the part of the expanded stationarity condition. which shall be used sub- 
sequently. 

The solution of the optimization problem is independent of the method used to describe 

the boundary segments of the integral curves. Functions zS and Uk satisfying (‘2.4) and 

(2.5) should not differ from each other. To fulfil this condition, it is necessary that 

h (1) E h,fZ) + al $- * (s=f,c., n), 
1) 

$‘)= plc(‘) (k:=i ,..., r) 

ao=-!fg (2.7) 

hold. The last of these equations is particularly important, We note at this stage that 
analysis of the conjugation conditions for the points t = t1 and t = tz which are given 

bY x 8 0) (tl - 0) q h/l (tl + 0) - v. (381 a%* jt, 

L s (2) (tl - 0) = x,(2) (tr + 0) - y1 (ae/azs jtt 

?p (ta - 0) = ?p (ts + O), x 0) (tl- 0) = s p.& C2f (tl - 0) 1 

h 8 (2) (t% - 0) = h*@) (ta + O), A 1) 0) (ta + 0) = x @) (ta + 0) 8 

leads to the relations 
% (G = O, a1 01) = yo - Vl (2.8) 

Let us now consider the Clebsch inequality, It can easily be shown that, when the 
first method of describing the boundary segments is used. the inequality assumes the form 

5 i ~~S.P.,+2PLp~~IIIM1)1~0 
i=lk=1 

On setting au, = 0 (I = 1, . . . . m) and 8u,tl $5 0, we obtain 2~ (6b+Ja < 0 , which 
in turn yields 

a0 < 0 (2.9) 

Using the last relation of (2.7). we obtain by (2.9) 

da,ldt > 0 (2.10) 

which, together with (2.8), may be found useful in determining the instant t = ta at 

which the optimal trajectory leaves the boundary of the region (1.3). 

9, Con#trrlntr of qth order, When the qth order constraints appear in the 

problem, the boundary segments of the optimal aajectory can be described in q i- 1 
equivalent ways. Indeed, the condition that j equations #i = 0 (i = 0, i,..., f < 4 - 1) 

@o = 6) hold for t = tl and only relations $$I+~ = 0 when t E ftl, &] , is sufficient 
for the representative point to lie on the interval it,, &I of the boundary of the region 

(1.3). 
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In each of these methods the functional I has the form 

$=Wi [$t~$@$ 

i--l 

--H(” - a*@,7 $8 f 2 Ykt), (‘z (bl), 2x] 
f5 k= 

(i = 1, . . . . q) (3”1) 

which reduces to (2.1) for i = 0 L Formulas defining H (9 are obtained from the first 

relation of (‘2. ‘L) by the appropriate change of the superscripts. Expanding the necessary 

condition of ~tationarity~ we find the iWowing equations : 

Equations corresponding to the vafue i = t7 have the form of (2.4). 
When analyzing Eqs. (3.2), we should recall that the definition of the q th order con- 

straints implies that a6 

‘-=o alA 
z!!.+?J$!$ 

ri==a, . . ..a-1). & 
t S=l 

hold, Consequently, repeating the operations described in Sect. 2 we shall arrive at the 
followiu~ relations : 

a@* 
x @f = q- +ot++,, * (E = x* ..l> ?a) 

* 
p&w = g&p@ (F; = x, **.i I-) 

LI 
%,I 

a, =-dt (i ==op . . . . q-1) 

When the fatter hold, all solutions of the optimal problem,using any of the methods 
of describing the boundary segments given above, will coincide. When L = ta, the equa- 

tion cli (tz) = 0 (i = l,..., 4) (3.4) 
should hold. From (3.3) we have 

M* =I: (-n)+i ds 

Using again the Clebsch inequality and conditions (I. 3), we obtain the following set 
of inequalities : dicr 

f--$---$ <s50 <i =x0, *.-* 4) 1=$ 

The ktter should be used for ~vesti~at~ng the boundary submenu with the pth order 

constraints. 

Example, Let us consider the optimisation problem for 

X&’ = X&, % * = % u, (4.9 

and the relation 
9 (%r %4) =: 7_q c q - i = 0 (4.2) 

We mquire that the inequality 

@ (z&, z*) = xf - 21 tg e - ~[1-(&+P3]<0 (4.3) 

and conditions 
%I (0) =z Ss (0) = 0 (4.4, 

hO%, 
we seek z1 and 11% width m~u~rni~~ the time T in which the system reaches the fine 
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tl = 1. The brachistochrone problem could be stated in this form under the condition 

that the point cannot descend below a certain straight line. 
In the inequality (4.3), a and 6 have constant values falling within the limits 

Odadl and 0<6~Ven. 
By constructing the functional I corresponding to the second method of describing 

the boundary and by making use of the equation and relationships pertinent to this vari- 
ational problem, we arrive at the following solution. On the interval 0 < t < t1 corre- 

sponding to the interior points of the region (1.3) we have 

x1 = C,, q = ‘/z cl-2 (c,t - sin C1t) u1 = sin I/a C,t; p1 = -_1 

hz i= 2 cos ‘Ia qt, z2 = C,-l sin 1/z C,t, Ug = co9 I/* C,t (4.5) 

On the boundary interval tl \< t < tz the solution has the form 

h= et, 2x=; &y+"'(~+upI+A?, Ul-_(l +q-'l* 

x2=-c&p + k'Lpt + A3, 2*= '/Lk(1 + k") 4 f + Al, IL*= k(l +pp 

Cl - c.1 
(4.9 

p1= - I/?, v1= 
k ’ al = [k - l/d I.3 (1 + k2) “l] za-l(l + ka)-“t 

Finally, on the interval ta < t < 2’ on which the representative point is again interior 

to (1.3), the solution is 

& = C,, *I = I/? CzS2 [Czt - sin C, (T - t)J + C,, u1 = CO.9 ‘/* C, (T - t) 

pl=---l (4.1) 

hn = 2 sin I/$ C, (T - t), “2 = C.&-l cos ‘fz c, (T - t), us = sin VS C, (T - t) 

where 
tl = 2 (ah)‘fe (I/* n - arctg k) (Z - 1/Z k (n - 2 arotg !c)]-“~ 

2 1 + ah/k % 
t’ = k k-1 + arctg k 

f (k-1 - I/Z TC + arctg k) 
)I 

T z 2 {[ (1 + ah/k) (k-1 + arctg k)]% - [(ah/k) (k-l - I/Z rt + amtg k)] I”) 

- l/s k (n - 2 arctg k 1 % 
afz I 

II+ &h/k 
Cs = [(ah/k) k-l + arctg k (k-l - ‘/A n + arc@ 4 I ‘la 

- ahfk 

Al= 
t 

&fl]l - ‘12 k (n - 2 arc& k)] ‘/t 1/2fi-aretgk+k 
1+ k” * A%=-ah 1 + k’4 

As=-+ (1 + k2yb - 
uh (k-1 + arctg k) [ 1 -f/2 k(s - 2 arctg k)] 

[ 

% 
(1 + ah/k) (1 + kJ) 11 

k = tg 8, h = 20 11 - (11~ n - e) tg el t4.e 

Inserting &and zS into the last relation of (4.6) and differentiating with respect to 
time we easily find, that 

datidt > 0 for t E I& fJ, a, 0s) = Q (4.s) 

which coincide with those obtained in Sect. ‘2. 
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We determine the relationships between the structural elements of geometric bodies 
represented as plane or three-dimensional systems in the form of hinged-rod or rigid 

hingeless lattices by considering the intersections and gaps of the latter in a plane field. 
Three-dimensional bodies can be investigated by projecting them on a plane. The pro- 

jections considered in the present paper exclude complete coincidence of individual 
elements. One way of establishing the relationships between the elements of plane and 

three-dimensional bodies is by mathematical induction. 

1. Initial aatumptfon8, We begin by defining some terms: 
Rods are straight or curvilinear bodies one of whose dimensions is large compared 

to the other. These bodies possess three degrees of freedom in a plane and five degrees 
of freedom in space. 

Disks are bodies or geometrically nonvarying links with three degrees of freedom 

in a plane and six degrees of freedom in space. 
Hingeless (free) intersections are domains or points of contact between elements 

(disks, rods, or both). 
Hinged intersections are domains or points of contact between elements into which 

hinges have been introduced. 
Gaps are individual closed domains within the outer contour whose dimensions can 

be determined by direct calculation of the ares of clearance. 
We assume that the gaps can be of any shape, e. g. a uniangle (a domain bounded by 

a closed curve with a single acute or obtuse corner), a biangle (a domain bounded by a 
closed curve.with two acute or obtuse corners or one of each), a triangle, a polygon, or 
a nonangle (a domain bounded by a closed curve with smooth transitions from one curve 

to another). 


